ATP6V0A4

Protein-coding gene in the species Homo sapiens
ATP6V0A4
Identifiers
AliasesATP6V0A4, A4, ATP6N1B, ATP6N2, RDRTA2, RTA1C, RTADR, STV1, VPH1, VPP2, ATPase H+ transporting V0 subunit a4, DRTA3
External IDsOMIM: 605239 MGI: 2153480 HomoloGene: 39904 GeneCards: ATP6V0A4
Gene location (Human)
Chromosome 7 (human)
Chr.Chromosome 7 (human)[1]
Chromosome 7 (human)
Genomic location for ATP6V0A4
Genomic location for ATP6V0A4
Band7q34Start138,706,294 bp[1]
End138,799,560 bp[1]
Gene location (Mouse)
Chromosome 6 (mouse)
Chr.Chromosome 6 (mouse)[2]
Chromosome 6 (mouse)
Genomic location for ATP6V0A4
Genomic location for ATP6V0A4
Band6|6 B1Start38,025,418 bp[2]
End38,101,521 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • kidney

  • renal medulla

  • kidney tubule

  • parotid gland

  • skin of abdomen

  • oral cavity

  • minor salivary glands

  • metanephric glomerulus

  • thymus

  • bronchial epithelial cell
Top expressed in
  • lip

  • kidney

  • morula

  • proximal tubule

  • esophagus

  • blastocyst

  • yolk sac

  • secondary oocyte

  • pharynx

  • larynx
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • ATPase binding
  • proton-transporting ATPase activity, rotational mechanism
  • protein binding
  • proton transmembrane transporter activity
Cellular component
  • integral component of membrane
  • endosome
  • proton-transporting V-type ATPase, V0 domain
  • phagocytic vesicle membrane
  • membrane
  • vacuolar proton-transporting V-type ATPase, V0 domain
  • plasma membrane
  • apical part of cell
  • brush border membrane
  • lysosomal membrane
  • apical plasma membrane
  • brush border
  • vacuolar proton-transporting V-type ATPase complex
  • endosome membrane
  • extracellular exosome
Biological process
  • insulin receptor signaling pathway
  • excretion
  • transferrin transport
  • ossification
  • vacuolar proton-transporting V-type ATPase complex assembly
  • ion transport
  • sensory perception of sound
  • vacuolar acidification
  • ion transmembrane transport
  • ATP synthesis coupled proton transport
  • regulation of pH
  • phagosome acidification
  • transport
  • proton transmembrane transport
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

50617

140494

Ensembl

ENSG00000105929

ENSMUSG00000038600

UniProt

Q9HBG4

Q920R6

RefSeq (mRNA)

NM_020632
NM_130840
NM_130841

NM_080467

RefSeq (protein)

NP_065683
NP_570855
NP_570856

NP_536715

Location (UCSC)Chr 7: 138.71 – 138.8 MbChr 6: 38.03 – 38.1 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

V-type proton ATPase 116 kDa subunit a isoform 4 is an enzyme that in humans is encoded by the ATP6V0A4 gene.[5][6][7]

Function

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of intracellular compartments of eukaryotic cells. V-ATPase dependent acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A and three B subunits, two G subunits plus the C, D, E, F, and H subunits. The V1 domain contains the ATP catalytic site. The V0 domain consists of five different subunits: a, c, c', c'', and d. This gene is one of four genes in man and mouse that encode different isoforms of the a subunit. Alternatively spliced transcript variants encoding the same protein have been described. Mutations in this gene are associated with renal tubular acidosis associated with preserved hearing.[7]

Interactions

ATP6V0A4 has been shown to interact with PFKM.[8]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105929 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000038600 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Medina JF, Lifton RP (Jan 2000). "Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34". Am. J. Hum. Genet. 65 (6): 1656–65. doi:10.1086/302679. PMC 1288376. PMID 10577919.
  6. ^ Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Lifton RP, Scherer SW, Karet FE (Oct 2000). "Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing". Nat. Genet. 26 (1): 71–5. doi:10.1038/79208. PMID 10973252. S2CID 19880326.
  7. ^ a b "Entrez Gene: ATP6V0A4 ATPase, H+ transporting, lysosomal V0 subunit a4".
  8. ^ Su Y, Zhou A, Al-Lamki RS, Karet FE (May 2003). "The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans". J. Biol. Chem. 278 (22): 20013–8. doi:10.1074/jbc.M210077200. PMID 12649290.

External links

Further reading

  • Finbow ME, Harrison MA (1997). "The vacuolar H+-ATPase: a universal proton pump of eukaryotes". Biochem. J. 324 (3): 697–712. doi:10.1042/bj3240697. PMC 1218484. PMID 9210392.
  • Stevens TH, Forgac M (1997). "Structure, function and regulation of the vacuolar (H+)-ATPase". Annu. Rev. Cell Dev. Biol. 13: 779–808. doi:10.1146/annurev.cellbio.13.1.779. PMID 9442887.
  • Nelson N, Harvey WR (1999). "Vacuolar and plasma membrane proton-adenosinetriphosphatases". Physiol. Rev. 79 (2): 361–85. doi:10.1152/physrev.1999.79.2.361. PMID 10221984. S2CID 1477911.
  • Forgac M (1999). "Structure and properties of the vacuolar (H+)-ATPases". J. Biol. Chem. 274 (19): 12951–4. doi:10.1074/jbc.274.19.12951. PMID 10224039.
  • Kane PM (1999). "Introduction: V-ATPases 1992-1998". J. Bioenerg. Biomembr. 31 (1): 3–5. doi:10.1023/A:1001884227654. PMID 10340843.
  • Wieczorek H, Brown D, Grinstein S, Ehrenfeld J, Harvey WR (1999). "Animal plasma membrane energization by proton-motive V-ATPases". BioEssays. 21 (8): 637–48. doi:10.1002/(SICI)1521-1878(199908)21:8<637::AID-BIES3>3.0.CO;2-W. PMID 10440860. S2CID 23505139.
  • Brown D, Breton S (2000). "H(+)V-ATPase-dependent luminal acidification in the kidney collecting duct and the epididymis/vas deferens: vesicle recycling and transcytotic pathways". J. Exp. Biol. 203 (Pt 1): 137–45. doi:10.1242/jeb.203.1.137. PMID 10600682.
  • Nishi T, Forgac M (2002). "The vacuolar (H+)-ATPases--nature's most versatile proton pumps". Nat. Rev. Mol. Cell Biol. 3 (2): 94–103. doi:10.1038/nrm729. PMID 11836511. S2CID 21122465.
  • Kawasaki-Nishi S, Nishi T, Forgac M (2003). "Proton translocation driven by ATP hydrolysis in V-ATPases". FEBS Lett. 545 (1): 76–85. doi:10.1016/S0014-5793(03)00396-X. PMID 12788495. S2CID 10507213.
  • Morel N (2003). "Neurotransmitter release: the dark side of the vacuolar-H+ATPase". Biol. Cell. 95 (7): 453–7. doi:10.1016/S0248-4900(03)00075-3. PMID 14597263. S2CID 17519696.


  • v
  • t
  • e