ATP6V0C

Protein-coding gene in the species Homo sapiens
ATP6V0C
Identifiers
AliasesATP6V0C, ATP6C, ATP6L, ATPL, VATL, VPPC, Vma3, ATPase H+ transporting V0 subunit c
External IDsOMIM: 108745; MGI: 88116; HomoloGene: 68199; GeneCards: ATP6V0C; OMA:ATP6V0C - orthologs
Gene location (Human)
Chromosome 16 (human)
Chr.Chromosome 16 (human)[1]
Chromosome 16 (human)
Genomic location for ATP6V0C
Genomic location for ATP6V0C
Band16p13.3Start2,513,952 bp[1]
End2,520,218 bp[1]
Gene location (Mouse)
Chromosome 17 (mouse)
Chr.Chromosome 17 (mouse)[2]
Chromosome 17 (mouse)
Genomic location for ATP6V0C
Genomic location for ATP6V0C
Band17|17 A3.3Start24,163,866 bp[2]
End24,169,702 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • superior frontal gyrus

  • prefrontal cortex

  • Brodmann area 9

  • anterior pituitary

  • hypothalamus

  • nucleus accumbens

  • hippocampus proper

  • temporal lobe

  • putamen

  • amygdala
Top expressed in
  • hippocampus proper

  • superior frontal gyrus

  • olfactory bulb

  • hypothalamus

  • cerebellar cortex

  • basal forebrain

  • proximal tubule

  • neural tube

  • kidney

  • mesencephalon
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
  • proton-transporting ATP synthase activity, rotational mechanism
  • proton-transporting ATPase activity, rotational mechanism
  • protein binding
  • proton transmembrane transporter activity
  • ubiquitin protein ligase binding
Cellular component
  • proton-transporting V-type ATPase, V0 domain
  • phagocytic vesicle membrane
  • proton-transporting two-sector ATPase complex, proton-transporting domain
  • membrane
  • vacuolar membrane
  • focal adhesion
  • vacuolar proton-transporting V-type ATPase, V0 domain
  • lysosomal membrane
  • vacuole
  • endosome membrane
  • extracellular exosome
  • plasma membrane
  • azurophil granule membrane
  • tertiary granule membrane
  • ficolin-1-rich granule membrane
  • integral component of membrane
Biological process
  • insulin receptor signaling pathway
  • lysosomal lumen acidification
  • transferrin transport
  • ion transport
  • positive regulation of Wnt signaling pathway
  • ion transmembrane transport
  • viral process
  • regulation of macroautophagy
  • phagosome acidification
  • neutrophil degranulation
  • transport
  • proton transmembrane transport
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

527

11984

Ensembl

ENSG00000185883

ENSMUSG00000024121

UniProt

P27449

P63082

RefSeq (mRNA)

NM_001694
NM_001198569

NM_009729

RefSeq (protein)

NP_001185498
NP_001685

NP_033859
NP_001348460
NP_001348461
NP_001348462
NP_001348463

NP_001348464

Location (UCSC)Chr 16: 2.51 – 2.52 MbChr 17: 24.16 – 24.17 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

V-type proton ATPase 16 kDa proteolipid subunit is an enzyme that in humans is encoded by the ATP6V0C gene.[5][6][7]

Function

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A and three B subunits, two G subunits plus the C, D, E, F, and H subunits. The V1 domain contains the ATP catalytic site. The V0 domain consists of five different subunits: a, c, c', c", and d. Additional isoforms of many of the V1 and V0 subunit proteins are encoded by multiple genes or alternatively spliced transcript variants. This encoded protein is part of the V0 domain. This gene had the previous symbols of ATP6C and ATP6L.[7]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000185883 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024121 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Gillespie GA, Somlo S, Germino GG, Weinstat-Saslow D, Reeders ST (May 1991). "CpG island in the region of an autosomal dominant polycystic kidney disease locus defines the 5' end of a gene encoding a putative proton channel". Proceedings of the National Academy of Sciences of the United States of America. 88 (10): 4289–93. Bibcode:1991PNAS...88.4289G. doi:10.1073/pnas.88.10.4289. PMC 51644. PMID 1709739.
  6. ^ van Hille B, Vanek M, Richener H, Green JR, Bilbe G (Nov 1993). "Cloning and tissue distribution of subunits C, D, and E of the human vacuolar H(+)-ATPase". Biochemical and Biophysical Research Communications. 197 (1): 15–21. doi:10.1006/bbrc.1993.2434. PMID 8250920.
  7. ^ a b "Entrez Gene: ATP6V0C ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c".

External links

Further reading

  • Finbow ME, Harrison MA (Jun 1997). "The vacuolar H+-ATPase: a universal proton pump of eukaryotes". The Biochemical Journal. 324 (Pt 3): 697–712. doi:10.1042/bj3240697. PMC 1218484. PMID 9210392.
  • Stevens TH, Forgac M (1998). "Structure, function and regulation of the vacuolar (H+)-ATPase". Annual Review of Cell and Developmental Biology. 13: 779–808. doi:10.1146/annurev.cellbio.13.1.779. PMID 9442887.
  • Nelson N, Harvey WR (Apr 1999). "Vacuolar and plasma membrane proton-adenosinetriphosphatases". Physiological Reviews. 79 (2): 361–85. doi:10.1152/physrev.1999.79.2.361. PMID 10221984. S2CID 1477911.
  • Forgac M (May 1999). "Structure and properties of the vacuolar (H+)-ATPases". The Journal of Biological Chemistry. 274 (19): 12951–4. doi:10.1074/jbc.274.19.12951. PMID 10224039.
  • Kane PM (Feb 1999). "Introduction: V-ATPases 1992-1998". Journal of Bioenergetics and Biomembranes. 31 (1): 3–5. doi:10.1023/A:1001884227654. PMID 10340843.
  • Wieczorek H, Brown D, Grinstein S, Ehrenfeld J, Harvey WR (Aug 1999). "Animal plasma membrane energization by proton-motive V-ATPases". BioEssays. 21 (8): 637–48. doi:10.1002/(SICI)1521-1878(199908)21:8<637::AID-BIES3>3.0.CO;2-W. PMID 10440860. S2CID 23505139.
  • Nishi T, Forgac M (Feb 2002). "The vacuolar (H+)-ATPases--nature's most versatile proton pumps". Nature Reviews Molecular Cell Biology. 3 (2): 94–103. doi:10.1038/nrm729. PMID 11836511. S2CID 21122465.
  • Kawasaki-Nishi S, Nishi T, Forgac M (Jun 2003). "Proton translocation driven by ATP hydrolysis in V-ATPases". FEBS Letters. 545 (1): 76–85. doi:10.1016/S0014-5793(03)00396-X. PMID 12788495. S2CID 10507213.
  • Morel N (Oct 2003). "Neurotransmitter release: the dark side of the vacuolar-H+ATPase". Biology of the Cell. 95 (7): 453–7. doi:10.1016/S0248-4900(03)00075-3. PMID 14597263. S2CID 17519696.
  • Hasebe M, Hanada H, Moriyama Y, Maeda M, Futai M (Mar 1992). "Vacuolar type H(+)-ATPase genes: presence of four genes including pseudogenes for the 16-kDa proteolipid subunit in the human genome". Biochemical and Biophysical Research Communications. 183 (2): 856–63. doi:10.1016/0006-291X(92)90562-Y. PMID 1532310.
  • Koralnik IJ, Mulloy JC, Andresson T, Fullen J, Franchini G (Aug 1995). "Mapping of the intermolecular association of human T cell leukaemia/lymphotropic virus type I p12I and the vacuolar H+-ATPase 16 kDa subunit protein". The Journal of General Virology. 76 (8): 1909–16. doi:10.1099/0022-1317-76-8-1909. PMID 7636472.
  • Laitala-Leinonen T, Howell ML, Dean GE, Väänänen HK (Jan 1996). "Resorption-cycle-dependent polarization of mRNAs for different subunits of V-ATPase in bone-resorbing osteoclasts". Molecular Biology of the Cell. 7 (1): 129–42. doi:10.1091/mbc.7.1.129. PMC 278618. PMID 8741845.


  • v
  • t
  • e