Hafnium diboride

Hafnium diboride
Identifiers
CAS Number
  • 12007-23-7 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 21241816 checkY
ECHA InfoCard 100.031.351 Edit this at Wikidata
PubChem CID
  • 6336857
CompTox Dashboard (EPA)
  • DTXSID10893925 Edit this at Wikidata
InChI
  • InChI=1S/B2.Hf/c1-2;/q+2;-2 checkY
    Key: MELCCCHYSRGEEL-UHFFFAOYSA-N checkY
  • InChI=1/B2.Hf/c1-2;/q+2;-2/rB2Hf/c1-2-3-1
    Key: MELCCCHYSRGEEL-KRVKJWMQAC
  • B\1=B\[Hf]/1
Properties
Chemical formula
HfB2
Molar mass 200.11 g/mol
Density 11.2 g/cm3 [1]
Melting point ca. 3,250 °C (5,880 °F; 3,520 K)
Structure
Crystal structure
Hexagonal, hP3
Space group
P6/mmm, No. 191
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references
Chemical compound

Hafnium diboride is a type of ceramic composed of hafnium and boron that belongs to the class of ultra-high temperature ceramics. It has a melting temperature of about 3250 °C. It is an unusual ceramic, having relatively high thermal and electrical conductivities, properties it shares with isostructural titanium diboride and zirconium diboride. It is a grey, metallic looking material. Hafnium diboride has a hexagonal crystal structure, a molar mass of 200.11 grams per mole, and a density of 11.2 g/cm3.

Hafnium diboride is often combined with carbon, boron, silicon, silicon carbide, and/or nickel to improve the consolidation of the hafnium diboride powder (sintering). It is commonly formed into a solid by a process called hot pressing, where the powders are pressed together using both heat and pressure.

The material has potential for use in hypervelocity reentry vehicles such as ICBM heat shields or aerodynamic leading-edges, due to its strength and thermal properties. Unlike polymer and composite material, HfB2 can be formed into aerodynamic shapes that will not ablate during reentry.

Hafnium diboride is also investigated as a possible new material for nuclear reactor control rods. It is also being investigated as a microchip diffusion barrier. If synthesized correctly, the barrier can be less than 7 nm in thickness.

Nanocrystals of HfB2 with rose-like morphology were obtained combining HfO2 and NaBH4 at 700-900°C under argon flow:[2]

HfO2 + 3NaBH4 → HfB2 + 2Na(g,l) + NaBO2 + 6H2(g)

References

  1. ^ Fahrenholtz, William (10 May 2007). "Refractory diborides of zirconium and hafnium". Journal of the American Ceramic Society. 90 (5): 1347–1364. doi:10.1111/j.1551-2916.2007.01583.x.
  2. ^ Zoli, Luca; Galizia, Pietro; Silvestroni, Laura; Sciti, Diletta (23 January 2018). "Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride". Journal of the American Ceramic Society. 101 (6): 2627–2637. doi:10.1111/jace.15401.
  • v
  • t
  • e
Hf(II)
  • HfB2
Hf(III)
Hf(IV)
  • HfC
  • Hf3N4
  • HfBr4
  • HfCl4
  • HfF4
  • HfI4
  • Hf(C5H7O2)4
  • Hf(OSO2CF3)4
  • HfO2
  • Hf(NO3)4
  • HfSiO4
  • HfS2
  • La2Hf2O7
  • Ta4HfC5
  • CHf2N
  • v
  • t
  • e
Borides Bxy-
BxHy He
Li Be B C N O F Ne
Na MgB2 AlB2
AlB12
SiBx P S Cl Ar
K CaB4
CaB6
ScB12 TiB2 V CrB Mn FeB4
FexBy
CoxBy Ni3B
Ni2B
Cu Zn Ga Ge As Se Br Kr
Rb SrB6 YBx ZrB2 NbB2 Mo Tc RuBx Rh Pd Ag Cd In Sn Sb Te I Xe
Cs BaB6 * LuB4
LuB6
HfB2 TaBx WxBy ReB2 OsBx Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaB4
LaB6
CeB4
CeB6
PrB4
PrB6
NdB4
NdB6
Pm SmB4
SmB6
EuB6 GdB4
GdB6
TbB4
TbB6
DyB4
DyB6
HoB4
HoB6
ErB4
ErB6
TmB4
TmB6
YbB4
YbB6
** Ac Th Pa UB2 Np PuBx Am Cm Bk Cf Es Fm Md No