Landsberg–Schaar relation

Theorem

In number theory and harmonic analysis, the Landsberg–Schaar relation (or identity) is the following equation, which is valid for arbitrary positive integers p and q:

1 p n = 0 p 1 exp ( 2 π i n 2 q p ) = e 1 4 π i 2 q n = 0 2 q 1 exp ( π i n 2 p 2 q ) . {\displaystyle {\frac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {2\pi in^{2}q}{p}}\right)={\frac {e^{{\frac {1}{4}}\pi i}}{\sqrt {2q}}}\sum _{n=0}^{2q-1}\exp \left(-{\frac {\pi in^{2}p}{2q}}\right).}

The standard way to prove it[1] is to put τ = 2iq/p + ε, where ε > 0 in this identity due to Jacobi (which is essentially just a special case of the Poisson summation formula in classical harmonic analysis):

n = + e π n 2 τ = 1 τ n = + e π n 2 τ {\displaystyle \sum _{n=-\infty }^{+\infty }e^{-\pi n^{2}\tau }={\frac {1}{\sqrt {\tau }}}\sum _{n=-\infty }^{+\infty }e^{-\pi {\frac {n^{2}}{\tau }}}}

and then let ε → 0.

A proof using only finite methods was discovered in 2018 by Ben Moore.[2][3]

If we let q = 1, the identity reduces to a formula for the quadratic Gauss sum modulo p.

The Landsberg–Schaar identity can be rephrased more symmetrically as

1 p n = 0 p 1 exp ( π i n 2 q p ) = e 1 4 π i q n = 0 q 1 exp ( π i n 2 p q ) {\displaystyle {\frac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {\pi in^{2}q}{p}}\right)={\frac {e^{{\frac {1}{4}}\pi i}}{\sqrt {q}}}\sum _{n=0}^{q-1}\exp \left(-{\frac {\pi in^{2}p}{q}}\right)}

provided that we add the hypothesis that pq is an even number.

References

  1. ^ Dym, H.; McKean, H. P. (1972). Fourier Series and Integrals. Academic Press. ISBN 978-0122264511.
  2. ^ Moore, Ben (2020-12-01). "A proof of the Landsberg–Schaar relation by finite methods". The Ramanujan Journal. 53 (3): 653–665. arXiv:1810.06172. doi:10.1007/s11139-019-00195-4. ISSN 1572-9303. S2CID 55876453.
  3. ^ Moore, Ben (2019-07-17). "A proof of the Landsberg-Schaar relation by finite methods". arXiv:1810.06172 [math.NT].