Lanthanum strontium cobalt ferrite

Lanthanum strontium cobalt ferrite (LSCF), also called lanthanum strontium cobaltite ferrite is a specific ceramic oxide derived from lanthanum cobaltite of the ferrite group. It is a phase containing lanthanum(III) oxide, strontium oxide, cobalt oxide and iron oxide with the formula La
x
Sr
1-x
Co
y
Fe
1-y
O
3
, where 0.1≤x≤0.4 and 0.2≤y≤0.8.[1]

It is black in color and crystallizes in a distorted hexagonal perovskite structure.[2] LSCF undergoes phase transformations at various temperatures depending on the composition. This material is a mixed ionic electronic conductor with comparatively high electronic conductivity (200+ S/cm) and good ionic conductivity (0.2 S/cm).[3] It is typically non-stoichiometric and can be reduced further at high temperature in low oxygen partial pressures or in the presence of a reducing agent such as carbon.[4]

LSCF is being investigated as a material for intermediate temperature solid oxide fuel cell cathodes and, potentially as a direct carbon fuel cell anode.[2]

LSCF is also investigated as a membrane material for separation of oxygen from air, for use in e.g. cleaner burning power plants.[5]

See also

  • Lanthanum strontium manganite (LSM)
  • Lanthanum strontium ferrite (LSF)
  • Lanthanum calcium manganite (LCM)
  • Lanthanum strontium chromite (LSC)
  • Lanthanum strontium gallate magnesite (LSGM)

References

  1. ^ Chang, Hun-Chieh; Tsai, Dah-Shyang; Chung, Wen-Hung; Huang, Ying-Sheng; Le, Minh-Vien (27 April 2009). "A ceria layer as diffusion barrier between LAMOX and lanthanum strontium cobalt ferrite along with the impedance analysis". Solid State Ionics. 180 (4–5): 412–417. doi:10.1016/j.ssi.2009.01.018.
  2. ^ a b Kulkarni, A.; Ciacchi, F.T.; Giddey, S.; Munnings, C.; Badwal, S.P.S.; Kimpton, J.A.; Fini, D. (December 2012). "Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells". International Journal of Hydrogen Energy. 37 (24): 19092–19102. Bibcode:2012IJHE...3719092K. doi:10.1016/j.ijhydene.2012.09.141.
  3. ^ Badwal, SPS; Giddey, S; Munnings, C; Kulkarni, A (2014). "Review of Progress in High Temperature Solid Oxide Fuel Cells". Journal of the Australian Ceramics Society. 50 (1).
  4. ^ Munnings, C.; Kulkarni, A.; Giddey, S.; Badwal, S.P.S. (August 2014). "Biomass to power conversion in a direct carbon fuel cell". International Journal of Hydrogen Energy. 39 (23): 12377–12385. Bibcode:2014IJHE...3912377M. doi:10.1016/j.ijhydene.2014.03.255.
  5. ^ "Ceramic Tubes Could Cut Greenhouse Gas Emissions From Power Stations". ScienceDaily. Retrieved 2020-10-08.

External links

  • LSCF supplier and info American Elements
  • v
  • t
  • e
Lanthanum compounds
  • La(CH
    3
    COO)
    3
  • La(C5H7O2)3
  • LaAlO3
  • LaB6
  • LBCO
  • LaBr3
  • LaC2
  • LaCl3
  • La2(CO3)3
  • LaCoO3
  • C
    36
    H
    72
    LaO
    6
  • LaF3
  • LaH10
  • La2Hf2O7
  • La(IO3)3
  • LaI3
  • LaN
  • LaMnO3
  • LaNix (LaNi5)
  • La(NO3)3
  • La
    2
    (C
    2
    O
    4
    )
    3
  • La2O3
  • LaOF
  • La
    2
    O
    2
    S
  • La(OH)3
  • LaP
  • La2Te3
  • LaYbO3
  • LLZO
  • LSAT
  • LSCF
  • LSM
  • C
    54
    H
    105
    LaO
    6


Stub icon

This material-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e