Ocean current

Directional mass flow of oceanic water generated by external or internal forces
Ocean surface currents
Distinctive white lines trace the flow of surface currents around the world.
Visualization showing global ocean currents from January 1, 2010, to December 31, 2012, at sea level, then at 2,000 m (6,600 ft) below sea level
Animation of circulation around ice shelves of Antarctica

An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences.[1] Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and strength. Ocean currents are primarily horizontal water movements.

An ocean current flows for great distances and together they create the global conveyor belt, which plays a dominant role in determining the climate of many of Earth's regions. More specifically, ocean currents influence the temperature of the regions through which they travel. For example, warm currents traveling along more temperate coasts increase the temperature of the area by warming the sea breezes that blow over them. Perhaps the most striking example is the Gulf Stream, which, together with its extension the North Atlantic Drift, makes northwest Europe much more temperate for its high latitude than other areas at the same latitude. Another example is Lima, Peru, whose cooler subtropical climate contrasts with that of its surrounding tropical latitudes because of the Humboldt Current. Ocean currents are patterns of water movement that influence climate zones and weather patterns around the world. They are primarily driven by winds and by seawater density, although many other factors – including the shape and configuration of the ocean basin they flow through – influence them. The two basic types of currents – surface and deep-water currents – help define the character and flow of ocean waters across the planet.

Causes

The bathymetry of the Kerguelen Plateau in the Southern Ocean governs the course of the Kerguelen deep western boundary current, part of the global network of ocean currents.[2][3]

Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in units of sverdrup (sv), where 1 sv is equivalent to a volume flow rate of 1,000,000 m3 (35,000,000 cu ft) per second.

Surface ocean currents (in contrast to subsurface ocean currents), make up only 8% of all water in the ocean, are generally restricted to the upper 400 m (1,300 ft) of ocean water, and are separated from lower regions by varying temperatures and salinity which affect the density of the water, which in turn, defines each oceanic region. Because the movement of deep water in ocean basins is caused by density-driven forces and gravity, deep waters sink into deep ocean basins at high latitudes where the temperatures are cold enough to cause the density to increase. Surface currents are measured in units of meters per second (m/s) or in knots.[1]

Wind-driven circulation

Surface oceanic currents are driven by wind currents, the large scale prevailing winds drive major persistent ocean currents, and seasonal or occasional winds drive currents of similar persistence to the winds that drive them,[4] and the Coriolis effect plays a major role in their development.[5] The Ekman spiral velocity distribution results in the currents flowing at an angle to the driving winds, and they develop typical clockwise spirals in the northern hemisphere and counter-clockwise rotation in the southern hemisphere.[6] In addition, the areas of surface ocean currents move somewhat with the seasons; this is most notable in equatorial currents.

Deep ocean basins generally have a non-symmetric surface current, in that the eastern equator-ward flowing branch is broad and diffuse whereas the pole-ward flowing western boundary current is relatively narrow.

Thermohaline circulation

Deep ocean currents are driven by density and temperature gradients. This thermohaline circulation is also known as the ocean's conveyor belt. These currents, sometimes called submarine rivers, flow deep below the surface of the ocean and are hidden from immediate detection. Where significant vertical movement of ocean currents is observed, this is known as upwelling and downwelling. An international program called Argo began researching deep ocean currents with a fleet of underwater robots in the 2000s.

The thermohaline circulation is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.[7][8] The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents (such as the Gulf Stream) travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water). This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters (with a transit time of around 1000 years)[9] upwell in the North Pacific.[10] Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of the circulation has a large impact on the climate of the Earth. The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt. On occasion, it is imprecisely used to refer to the meridional overturning circulation, (MOC).

Coupling data collected by NASA/JPL by several different satellite-borne sensors, researchers have been able to "break through" the ocean's surface to detect "Meddies" – super-salty warm-water eddies that originate in the Mediterranean Sea and then sink more than a half-mile underwater in the Atlantic Ocean. The Meddies are shown in red in this scientific figure.
Device to record ocean currents
A recording current meter

Distribution

A 1943 map of the world's ocean currents

Currents of the Arctic Ocean

Currents of the Atlantic Ocean

Currents of the Indian Ocean

Currents of the Pacific Ocean

Currents of the Southern Ocean

  • Antarctic Circumpolar Current – Ocean current that flows clockwise from west to east around Antarctica
  • Tasman Outflow – Deepwater current that flows from the Pacific Ocean past Tasmania into the Indian Ocean
  • Kerguelen deep western boundary current[2][3]

Oceanic gyres

Effects on climate and ecology

Ocean currents are important in the study of marine debris, and vice versa. These currents also affect temperatures throughout the world. For example, the ocean current that brings warm water up the north Atlantic to northwest Europe also cumulatively and slowly blocks ice from forming along the seashores, which would also block ships from entering and exiting inland waterways and seaports, hence ocean currents play a decisive role in influencing the climates of regions through which they flow.[11] Cold ocean water currents flowing from polar and sub-polar regions bring in a lot of plankton that are crucial to the continued survival of several key sea creature species in marine ecosystems. Since plankton are the food of fish, abundant fish populations often live where these currents prevail.

Ocean currents are also very important in the dispersal of many life forms. An example is the life-cycle of the European Eel.

Ocean currents and climate change

As atmospheric temperatures continue to rise, this is anticipated to have various effects on the strength of surface ocean currents, wind-driven circulation and dispersal patterns.[12][13][14] Ocean currents play a significant role in influencing climate, and shifts in climate, in turn, impact ocean currents.[13] Over the last century, reconstructed sea surface temperature data reveal that western boundary currents are heating at double the rate of the global average.[15] These observations indicate that the western boundary currents are likely intensifying due to this change in temperature, and may continue to grow stronger in the near future.[13] Studies investigating international ocean current patterns have also suspected that anthropogenic climate change has accelerated upper ocean currents by 77%.[14] Faster upper ocean currents are often associated with increased vertical stratification, as well as faster and stronger zonal currents.[14]

In addition to water surface temperatures, the wind systems are a crucial determinant of ocean currents.[16] Wind wave systems influence oceanic heat exchange, the condition of the sea surface, and can alter ocean currents.[17] In the North Atlantic, equatorial Pacific, and Southern Ocean, increased wind speeds as well as significant wave heights have been attributed to climate change and natural processes combined.[17] In the East Australian Current, global warming has also been accredited to increased wind stress curls, which intensify these currents, and may even indirectly increase sea levels, due to the additional warming created by stronger currents.[18]

As ocean circulation changes due to climate, typical distribution patterns are also changing. The dispersal patterns of marine organisms depend on oceanographic conditions, which as a result, influence the biological composition of oceans.[12] Due to the patchiness of the natural ecological world, dispersal is a species survival mechanism for various organisms.[19] With strengthened boundary currents moving toward the poles, it is expected that some marine species will be redirected to the poles and greater depths.[12][20] The strengthening or weakening of typical dispersal pathways by increased temperatures are expected to not only impact the survival of native marine species due to inability to replenish their meta populations but also may increase the prevalence of invasive species.[12] In Japanese corals and macroalgae, the unusual dispersal pattern of organisms toward the poles may destabilize native species.[21]

Economic importance

Knowledge of surface ocean currents is essential in reducing costs of shipping, since traveling with them reduces fuel costs. In the wind powered sailing-ship era, knowledge of wind patterns and ocean currents was even more essential. Using ocean currents to help their ships into harbor and using currents such as the gulf stream to get back home.[22] The lack of understanding of ocean currents during that time period is hypothesized to be one of the contributing factors to exploration failure. The gulf stream and the Canary current keep western European countries warmer and less variable, while at the same latitude North America's weather was colder.[23] A good example of this is the Agulhas Current (down along eastern Africa), which long prevented sailors from reaching India.

In recent times, around-the-world sailing competitors make good use of surface currents to build and maintain speed. Ocean currents can also be used for marine power generation, with areas of Japan, Florida and Hawaii being considered for test projects. The utilization of currents today can still impact global trade, it can reduce the cost and emissions of shipping vessels.[24] Ocean currents can also impact the fishing industry, examples of this include the Tsugaru, Oyashio and Kuroshio currents all of which influence the western North Pacific temperature, which has been shown to be a habitat predictor for the Skipjack tuna.[25] It has also been shown that it is not just local currents that can affect a country's economy, but neighboring currents can influence the viability of local fishing industries.[26]

See also

  • iconOceans portal

References

  1. ^ a b "What is a current?". NOAA's National Ocean Service. 2009-03-01. Retrieved 2023-03-14.
  2. ^ a b "Massive Southern Ocean current discovered". ScienceDaily. Apr 27, 2010.
  3. ^ a b Yasushi Fukamachi, Stephen Rintoul; et al. (Apr 2010). "Strong export of Antarctic Bottom Water east of the Kerguelen plateau". Nature Geoscience. 3 (5): 327–331. Bibcode:2010NatGe...3..327F. doi:10.1038/NGEO842. hdl:2115/44116. S2CID 67815755.
  4. ^ "Current". www.nationalgeographic.org. National Geographic. 2 September 2011. Retrieved 7 January 2021.
  5. ^ "Ocean Currents of the World: Causes". 29 August 2020. Retrieved 2020-11-20.
  6. ^ National Ocean Service (March 25, 2008). "Surface Ocean Currents". noaa.gov. National Oceanic and Atmospheric Administration. Archived from the original on July 6, 2017. Retrieved 2017-06-13.
  7. ^ Rahmstorf, S (2003). "The concept of the thermohaline circulation" (PDF). Nature. 421 (6924): 699. Bibcode:2003Natur.421..699R. doi:10.1038/421699a. PMID 12610602. S2CID 4414604.
  8. ^ Lappo, SS (1984). "On reason of the northward heat advection across the Equator in the South Pacific and Atlantic ocean". Study of Ocean and Atmosphere Interaction Processes. Moscow Department of Gidrometeoizdat (in Mandarin): 125–9.
  9. ^ The global ocean conveyor belt is a constantly moving system of deep-ocean circulation driven by temperature and salinity; What is the global ocean conveyor belt?
  10. ^ Primeau, F (2005). "Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model" (PDF). Journal of Physical Oceanography. 35 (4): 545–64. Bibcode:2005JPO....35..545P. doi:10.1175/JPO2699.1. S2CID 130736022.
  11. ^ "What Is the Gulf Stream? | NOAA SciJinks – All About Weather". scijinks.gov. Retrieved 2024-04-15.
  12. ^ a b c d Wilson, Laura J.; Fulton, Christopher J.; Hogg, Andrew McC; Joyce, Karen E.; Radford, Ben T. M.; Fraser, Ceridwen I. (2016-05-02). "Climate‐driven changes to ocean circulation and their inferred impacts on marine dispersal patterns". Global Ecology and Biogeography. 25 (8): 923–939. doi:10.1111/geb.12456. ISSN 1466-822X.
  13. ^ a b c Miller, Johanna L. (2017). "Ocean currents respond to climate change in unexpected ways". Physics Today. 70 (1): 17–18.
  14. ^ a b c Peng, Qihua; Xie, Shang-Ping; Wang, Dongxiao; Huang, Rui Xin; Chen, Gengxin; Shu, Yeqiang; Shi, Jia-Rui; Liu, Wei (2022-04-22). "Surface warming–induced global acceleration of upper ocean currents". Science Advances. 8 (16). doi:10.1126/sciadv.abj8394. ISSN 2375-2548. PMC 9020668. PMID 35442733.
  15. ^ Wu, Lixin; Cai, Wenju; Zhang, Liping; Nakamura, Hisashi; Timmermann, Axel; Joyce, Terry; McPhaden, Michael J.; Alexander, Michael; Qiu, Bo; Visbeck, Martin; Chang, Ping; Giese, Benjamin (2012-01-29). "Enhanced warming over the global subtropical western boundary currents". Nature Climate Change. 2 (3): 161–166. doi:10.1038/nclimate1353. hdl:1912/5125. ISSN 1758-6798.
  16. ^ Constantin, Adrian (2021-01-02). "Frictional effects in wind-driven ocean currents". Geophysical & Astrophysical Fluid Dynamics. 115 (1): 1–14. doi:10.1080/03091929.2020.1748614. ISSN 0309-1929.
  17. ^ a b Dobrynin, Mikhail; Murawski, Jens; Baehr, Johanna; Ilyina, Tatiana (2015-02-15). "Detection and Attribution of Climate Change Signal in Ocean Wind Waves". Journal of Climate. 28 (4): 1578–1591. doi:10.1175/JCLI-D-13-00664.1. ISSN 0894-8755.
  18. ^ Cai, W.; Shi, G.; Cowan, T.; Bi, D.; Ribbe, J. (2005-12-10). "The response of the Southern Annular Mode, the East Australian Current, and the southern mid‐latitude ocean circulation to global warming". Geophysical Research Letters. 32 (23). doi:10.1029/2005GL024701. ISSN 0094-8276.
  19. ^ Kininmonth, Stuart (2011-04-11). "Dispersal connectivity and reserve selection for marine conservation". Ecological Modelling. 222 (7): 1272–1282.
  20. ^ Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J. (2014-08-22). "The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts". Proceedings of the Royal Society B: Biological Sciences. 281 (1789): 20140846. doi:10.1098/rspb.2014.0846. ISSN 0962-8452. PMC 4100510. PMID 25009065.
  21. ^ Kumagai, Naoki H.; García Molinos, Jorge; Yamano, Hiroya; Takao, Shintaro; Fujii, Masahiko; Yamanaka, Yasuhiro (2018-09-04). "Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming". Proceedings of the National Academy of Sciences. 115 (36): 8990–8995. doi:10.1073/pnas.1716826115. ISSN 0027-8424. PMC 6130349. PMID 30126981.
  22. ^ "Atlantic Ocean - Exploration, Currents, Marine Life | Britannica". www.britannica.com. Retrieved 2024-04-20.
  23. ^ US Department of Commerce, National Oceanic and Atmospheric Administration. "Boundary Currents - Currents: NOAA's National Ocean Service Education". oceanservice.noaa.gov. Retrieved 2024-04-20.
  24. ^ Chang, Yu-Chia; Tseng, Ruo-Shan; Chen, Guan-Yu; Chu, Peter C.; Shen, Yung-Ting (November 2013). "Ship Routing Utilizing Strong Ocean Currents". The Journal of Navigation. 66 (6): 825–835. doi:10.1017/S0373463313000441. ISSN 0373-4633.
  25. ^ Ramesh, Nandini; Rising, James A.; Oremus, Kimberly L. (2019-06-21). "The small world of global marine fisheries: The cross-boundary consequences of larval dispersal". Science. 364 (6446): 1192–1196. doi:10.1126/science.aav3409. ISSN 0036-8075.
  26. ^ Talley, Lynne D. (April 1, 1995). "North Pacific Intermediate Water in the Kuroshio/Oyashio Mixed Water Region". American Meteorological Society: 475–501 – via AMS Publications.

Further reading

  • Hansen, B.; Østerhus, S; Quadfasel, D; Turrell, W (2004). "Already the day after tomorrow?". Science. 305 (5686): 953–954. doi:10.1126/science.1100085. PMID 15310882. S2CID 12968045.
  • Kerr, Richard A. (2004). "A slowing cog in the North Atlantic ocean's climate machine". Science. 304 (5669): 371–372. doi:10.1126/science.304.5669.371a. PMID 15087513. S2CID 42150417.
  • Munday, Phillip L.; Jones, Geoffrey P.; Pratchett, Morgan S.; Williams, Ashley J. (2008). "Climate change and the future for coral reef fishes". Fish and Fisheries. 9 (3): 261–285. Bibcode:2008AqFF....9..261M. doi:10.1111/j.1467-2979.2008.00281.x.
  • Rahmstorf, S. (2003). "Thermohaline circulation: The current climate". Nature. 421 (6924): 699. Bibcode:2003Natur.421..699R. doi:10.1038/421699a. PMID 12610602. S2CID 4414604.
  • Roemmich, D. (2007). "Physical oceanography: Super spin in the southern seas". Nature. 449 (7158): 34–35. Bibcode:2007Natur.449...34R. doi:10.1038/449034a. PMID 17805284. S2CID 2951110.

External links

Wikimedia Commons has media related to Ocean currents.
  • Current global map of sea surface currents
  • v
  • t
  • e
Ocean currents and gyres
Currents
Arctic Ocean
Atlantic Ocean
Indian Ocean
Pacific Ocean
Southern Ocean
Gyres
Major gyres
Other gyres
Related
icon Environment portal  icon Oceans portal
  • v
  • t
  • e
Waves
Upwelling





Antarctic bottom water
Circulation
Tides
Landforms
Plate
tectonics
Ocean zones
Sea level
Acoustics
Satellites
Related
  • icon Oceans portal
  • Category
  • Commons
  • v
  • t
  • e
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other
Authority control databases: National Edit this at Wikidata
  • Germany
  • Israel
  • United States
  • Japan
  • Czech Republic