Operator monotone function

In linear algebra, the operator monotone function is an important type of real-valued function, fully classified by Charles Löwner in 1934.[1] It is closely allied to the operator concave and operator concave functions, and is encountered in operator theory and in matrix theory, and led to the Löwner–Heinz inequality.[2][3]

Definition

A function f : I R {\displaystyle f:I\to \mathbb {R} } defined on an interval I R {\displaystyle I\subseteq \mathbb {R} } is said to be operator monotone if whenever A {\displaystyle A} and B {\displaystyle B} are Hermitian matrices (of any size/dimensions) whose eigenvalues all belong to the domain of f {\displaystyle f} and whose difference A B {\displaystyle A-B} is a positive semi-definite matrix, then necessarily f ( A ) f ( B ) 0 {\displaystyle f(A)-f(B)\geq 0} where f ( A ) {\displaystyle f(A)} and f ( B ) {\displaystyle f(B)} are the values of the matrix function induced by f {\displaystyle f} (which are matrices of the same size as A {\displaystyle A} and B {\displaystyle B} ).

Notation

This definition is frequently expressed with the notation that is now defined. Write A 0 {\displaystyle A\geq 0} to indicate that a matrix A {\displaystyle A} is positive semi-definite and write A B {\displaystyle A\geq B} to indicate that the difference A B {\displaystyle A-B} of two matrices A {\displaystyle A} and B {\displaystyle B} satisfies A B 0 {\displaystyle A-B\geq 0} (that is, A B {\displaystyle A-B} is positive semi-definite).

With f : I R {\displaystyle f:I\to \mathbb {R} } and A {\displaystyle A} as in the theorem's statement, the value of the matrix function f ( A ) {\displaystyle f(A)} is the matrix (of the same size as A {\displaystyle A} ) defined in terms of its A {\displaystyle A} 's spectral decomposition A = j λ j P j {\displaystyle A=\sum _{j}\lambda _{j}P_{j}} by

f ( A ) = j f ( λ j ) P j   , {\displaystyle f(A)=\sum _{j}f(\lambda _{j})P_{j}~,}
where the λ j {\displaystyle \lambda _{j}} are the eigenvalues of A {\displaystyle A} with corresponding projectors P j . {\displaystyle P_{j}.}

The definition of an operator monotone function may now be restated as:

A function f : I R {\displaystyle f:I\to \mathbb {R} } defined on an interval I R {\displaystyle I\subseteq \mathbb {R} } said to be operator monotone if (and only if) for all positive integers n , {\displaystyle n,} and all n × n {\displaystyle n\times n} Hermitian matrices A {\displaystyle A} and B {\displaystyle B} with eigenvalues in I , {\displaystyle I,} if A B {\displaystyle A\geq B} then f ( A ) f ( B ) . {\displaystyle f(A)\geq f(B).}

See also

  • Matrix function – Function that maps matrices to matricesPages displaying short descriptions of redirect targets
  • Trace inequality – inequalities involving linear operators on Hilbert spacesPages displaying wikidata descriptions as a fallback

References

  1. ^ Löwner, K.T. (1934). "Über monotone Matrixfunktionen". Mathematische Zeitschrift. 38: 177–216. doi:10.1007/BF01170633. S2CID 121439134.
  2. ^ "Löwner–Heinz inequality". Encyclopedia of Mathematics.
  3. ^ Chansangiam, Pattrawut (2013). "Operator Monotone Functions: Characterizations and Integral Representations". arXiv:1305.2471 [math.FA].

Further reading

  • Schilling, R.; Song, R.; Vondraček, Z. (2010). Bernstein functions. Theory and Applications. Studies in Mathematics. Vol. 37. de Gruyter, Berlin. doi:10.1515/9783110215311. ISBN 9783110215311.
  • Hansen, Frank (2013). "The fast track to Löwner's theorem". Linear Algebra and Its Applications. 438 (11): 4557–4571. arXiv:1112.0098. doi:10.1016/j.laa.2013.01.022. S2CID 119607318.
  • Chansangiam, Pattrawut (2015). "A Survey on Operator Monotonicity, Operator Convexity, and Operator Means". International Journal of Analysis. 2015: 1–8. doi:10.1155/2015/649839.
  • v
  • t
  • e