Projective tensor product

In functional analysis, an area of mathematics, the projective tensor product of two locally convex topological vector spaces is a natural topological vector space structure on their tensor product. Namely, given locally convex topological vector spaces X {\displaystyle X} and Y {\displaystyle Y} , the projective topology, or π-topology, on X Y {\displaystyle X\otimes Y} is the strongest topology which makes X Y {\displaystyle X\otimes Y} a locally convex topological vector space such that the canonical map ( x , y ) x y {\displaystyle (x,y)\mapsto x\otimes y} (from X × Y {\displaystyle X\times Y} to X Y {\displaystyle X\otimes Y} ) is continuous. When equipped with this topology, X Y {\displaystyle X\otimes Y} is denoted X π Y {\displaystyle X\otimes _{\pi }Y} and called the projective tensor product of X {\displaystyle X} and Y {\displaystyle Y} .

Definitions

Let X {\displaystyle X} and Y {\displaystyle Y} be locally convex topological vector spaces. Their projective tensor product X π Y {\displaystyle X\otimes _{\pi }Y} is the unique locally convex topological vector space with underlying vector space X Y {\displaystyle X\otimes Y} having the following universal property:[1]

For any locally convex topological vector space Z {\displaystyle Z} , if Φ Z {\displaystyle \Phi _{Z}} is the canonical map from the vector space of bilinear maps X × Y Z {\displaystyle X\times Y\to Z} to the vector space of linear maps X Y Z {\displaystyle X\otimes Y\to Z} , then the image of the restriction of Φ Z {\displaystyle \Phi _{Z}} to the continuous bilinear maps is the space of continuous linear maps X π Y Z {\displaystyle X\otimes _{\pi }Y\to Z} .

When the topologies of X {\displaystyle X} and Y {\displaystyle Y} are induced by seminorms, the topology of X π Y {\displaystyle X\otimes _{\pi }Y} is induced by seminorms constructed from those on X {\displaystyle X} and Y {\displaystyle Y} as follows. If p {\displaystyle p} is a seminorm on X {\displaystyle X} , and q {\displaystyle q} is a seminorm on Y {\displaystyle Y} , define their tensor product p q {\displaystyle p\otimes q} to be the seminorm on X Y {\displaystyle X\otimes Y} given by

( p q ) ( b ) = inf r > 0 , b r W r {\displaystyle (p\otimes q)(b)=\inf _{r>0,\,b\in rW}r}
for all b {\displaystyle b} in X Y {\displaystyle X\otimes Y} , where W {\displaystyle W} is the balanced convex hull of the set { x y : p ( x ) 1 , q ( y ) 1 } {\displaystyle \left\{x\otimes y:p(x)\leq 1,q(y)\leq 1\right\}} . The projective topology on X Y {\displaystyle X\otimes Y} is generated by the collection of such tensor products of the seminorms on X {\displaystyle X} and Y {\displaystyle Y} .[2][1] When X {\displaystyle X} and Y {\displaystyle Y} are normed spaces, this definition applied to the norms on X {\displaystyle X} and Y {\displaystyle Y} gives a norm, called the projective norm, on X Y {\displaystyle X\otimes Y} which generates the projective topology.[3]

Properties

Throughout, all spaces are assumed to be locally convex. The symbol X ^ π Y {\displaystyle X{\widehat {\otimes }}_{\pi }Y} denotes the completion of the projective tensor product of X {\displaystyle X} and Y {\displaystyle Y} .

  • If X {\displaystyle X} and Y {\displaystyle Y} are both Hausdorff then so is X π Y {\displaystyle X\otimes _{\pi }Y} ;[3] if X {\displaystyle X} and Y {\displaystyle Y} are Fréchet spaces then X π Y {\displaystyle X\otimes _{\pi }Y} is barelled.[4]
  • For any two continuous linear operators u 1 : X 1 Y 1 {\displaystyle u_{1}:X_{1}\to Y_{1}} and u 2 : X 2 Y 2 {\displaystyle u_{2}:X_{2}\to Y_{2}} , their tensor product (as linear maps) u 1 u 2 : X 1 π X 2 Y 1 π Y 2 {\displaystyle u_{1}\otimes u_{2}:X_{1}\otimes _{\pi }X_{2}\to Y_{1}\otimes _{\pi }Y_{2}} is continuous.[5]
  • In general, the projective tensor product does not respect subspaces (e.g. if Z {\displaystyle Z} is a vector subspace of X {\displaystyle X} then the TVS Z π Y {\displaystyle Z\otimes _{\pi }Y} has in general a coarser topology than the subspace topology inherited from X π Y {\displaystyle X\otimes _{\pi }Y} ).[6]
  • If E {\displaystyle E} and F {\displaystyle F} are complemented subspaces of X {\displaystyle X} and Y , {\displaystyle Y,} respectively, then E F {\displaystyle E\otimes F} is a complemented vector subspace of X π Y {\displaystyle X\otimes _{\pi }Y} and the projective norm on E π F {\displaystyle E\otimes _{\pi }F} is equivalent to the projective norm on X π Y {\displaystyle X\otimes _{\pi }Y} restricted to the subspace E F {\displaystyle E\otimes F} . Furthermore, if X {\displaystyle X} and F {\displaystyle F} are complemented by projections of norm 1, then E F {\displaystyle E\otimes F} is complemented by a projection of norm 1.[6]
  • Let E {\displaystyle E} and F {\displaystyle F} be vector subspaces of the Banach spaces X {\displaystyle X} and Y {\displaystyle Y} , respectively. Then E ^ F {\displaystyle E{\widehat {\otimes }}F} is a TVS-subspace of X ^ π Y {\displaystyle X{\widehat {\otimes }}_{\pi }Y} if and only if every bounded bilinear form on E × F {\displaystyle E\times F} extends to a continuous bilinear form on X × Y {\displaystyle X\times Y} with the same norm.[7]

Completion

In general, the space X π Y {\displaystyle X\otimes _{\pi }Y} is not complete, even if both X {\displaystyle X} and Y {\displaystyle Y} are complete (in fact, if X {\displaystyle X} and Y {\displaystyle Y} are both infinite-dimensional Banach spaces then X π Y {\displaystyle X\otimes _{\pi }Y} is necessarily not complete[8]). However, X π Y {\displaystyle X\otimes _{\pi }Y} can always be linearly embedded as a dense vector subspace of some complete locally convex TVS, which is generally denoted by X ^ π Y {\displaystyle X{\widehat {\otimes }}_{\pi }Y} .

The continuous dual space of X ^ π Y {\displaystyle X{\widehat {\otimes }}_{\pi }Y} is the same as that of X π Y {\displaystyle X\otimes _{\pi }Y} , namely, the space of continuous bilinear forms B ( X , Y ) {\displaystyle B(X,Y)} .[9]

Grothendieck's representation of elements in the completion

In a Hausdorff locally convex space X , {\displaystyle X,} a sequence ( x i ) i = 1 {\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} in X {\displaystyle X} is absolutely convergent if i = 1 p ( x i ) < {\displaystyle \sum _{i=1}^{\infty }p\left(x_{i}\right)<\infty } for every continuous seminorm p {\displaystyle p} on X . {\displaystyle X.} [10] We write x = i = 1 x i {\displaystyle x=\sum _{i=1}^{\infty }x_{i}} if the sequence of partial sums ( i = 1 n x i ) n = 1 {\displaystyle \left(\sum _{i=1}^{n}x_{i}\right)_{n=1}^{\infty }} converges to x {\displaystyle x} in X . {\displaystyle X.} [10]

The following fundamental result in the theory of topological tensor products is due to Alexander Grothendieck.[11]

Theorem — Let X {\displaystyle X} and Y {\displaystyle Y} be metrizable locally convex TVSs and let z X ^ π Y . {\displaystyle z\in X{\widehat {\otimes }}_{\pi }Y.} Then z {\displaystyle z} is the sum of an absolutely convergent series

z = i = 1 λ i x i y i {\displaystyle z=\sum _{i=1}^{\infty }\lambda _{i}x_{i}\otimes y_{i}}
where i = 1 | λ i | < , {\displaystyle \sum _{i=1}^{\infty }|\lambda _{i}|<\infty ,} and ( x i ) i = 1 {\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} and ( y i ) i = 1 {\displaystyle \left(y_{i}\right)_{i=1}^{\infty }} are null sequences in X {\displaystyle X} and Y , {\displaystyle Y,} respectively.

The next theorem shows that it is possible to make the representation of z {\displaystyle z} independent of the sequences ( x i ) i = 1 {\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} and ( y i ) i = 1 . {\displaystyle \left(y_{i}\right)_{i=1}^{\infty }.}

Theorem[12] — Let X {\displaystyle X} and Y {\displaystyle Y} be Fréchet spaces and let U {\displaystyle U} (resp. V {\displaystyle V} ) be a balanced open neighborhood of the origin in X {\displaystyle X} (resp. in Y {\displaystyle Y} ). Let K 0 {\displaystyle K_{0}} be a compact subset of the convex balanced hull of U V := { u v : u U , v V } . {\displaystyle U\otimes V:=\{u\otimes v:u\in U,v\in V\}.} There exists a compact subset K 1 {\displaystyle K_{1}} of the unit ball in 1 {\displaystyle \ell ^{1}} and sequences ( x i ) i = 1 {\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} and ( y i ) i = 1 {\displaystyle \left(y_{i}\right)_{i=1}^{\infty }} contained in U {\displaystyle U} and V , {\displaystyle V,} respectively, converging to the origin such that for every z K 0 {\displaystyle z\in K_{0}} there exists some ( λ i ) i = 1 K 1 {\displaystyle \left(\lambda _{i}\right)_{i=1}^{\infty }\in K_{1}} such that

z = i = 1 λ i x i y i . {\displaystyle z=\sum _{i=1}^{\infty }\lambda _{i}x_{i}\otimes y_{i}.}

Topology of bi-bounded convergence

Let B X {\displaystyle {\mathfrak {B}}_{X}} and B Y {\displaystyle {\mathfrak {B}}_{Y}} denote the families of all bounded subsets of X {\displaystyle X} and Y , {\displaystyle Y,} respectively. Since the continuous dual space of X ^ π Y {\displaystyle X{\widehat {\otimes }}_{\pi }Y} is the space of continuous bilinear forms B ( X , Y ) , {\displaystyle B(X,Y),} we can place on B ( X , Y ) {\displaystyle B(X,Y)} the topology of uniform convergence on sets in B X × B Y , {\displaystyle {\mathfrak {B}}_{X}\times {\mathfrak {B}}_{Y},} which is also called the topology of bi-bounded convergence. This topology is coarser than the strong topology on B ( X , Y ) {\displaystyle B(X,Y)} , and in (Grothendieck 1955), Alexander Grothendieck was interested in when these two topologies were identical. This is equivalent to the problem: Given a bounded subset B X ^ Y , {\displaystyle B\subseteq X{\widehat {\otimes }}Y,} do there exist bounded subsets B 1 X {\displaystyle B_{1}\subseteq X} and B 2 Y {\displaystyle B_{2}\subseteq Y} such that B {\displaystyle B} is a subset of the closed convex hull of B 1 B 2 := { b 1 b 2 : b 1 B 1 , b 2 B 2 } {\displaystyle B_{1}\otimes B_{2}:=\{b_{1}\otimes b_{2}:b_{1}\in B_{1},b_{2}\in B_{2}\}} ?

Grothendieck proved that these topologies are equal when X {\displaystyle X} and Y {\displaystyle Y} are both Banach spaces or both are DF-spaces (a class of spaces introduced by Grothendieck[13]). They are also equal when both spaces are Fréchet with one of them being nuclear.[9]

Strong dual and bidual

Let X {\displaystyle X} be a locally convex topological vector space and let X {\displaystyle X^{\prime }} be its continuous dual space. Alexander Grothendieck characterized the strong dual and bidual for certain situations:

Theorem[14] (Grothendieck) — Let N {\displaystyle N} and Y {\displaystyle Y} be locally convex topological vector spaces with N {\displaystyle N} nuclear. Assume that both N {\displaystyle N} and Y {\displaystyle Y} are Fréchet spaces, or else that they are both DF-spaces. Then, denoting strong dual spaces with a subscripted b {\displaystyle b} :

  1. The strong dual of N ^ π Y {\displaystyle N{\widehat {\otimes }}_{\pi }Y} can be identified with N b ^ π Y b {\displaystyle N_{b}^{\prime }{\widehat {\otimes }}_{\pi }Y_{b}^{\prime }} ;
  2. The bidual of N ^ π Y {\displaystyle N{\widehat {\otimes }}_{\pi }Y} can be identified with N ^ π Y {\displaystyle N{\widehat {\otimes }}_{\pi }Y^{\prime \prime }} ;
  3. If Y {\displaystyle Y} is reflexive then N ^ π Y {\displaystyle N{\widehat {\otimes }}_{\pi }Y} (and hence N b ^ π Y b {\displaystyle N_{b}^{\prime }{\widehat {\otimes }}_{\pi }Y_{b}^{\prime }} ) is a reflexive space;
  4. Every separately continuous bilinear form on N b × Y b {\displaystyle N_{b}^{\prime }\times Y_{b}^{\prime }} is continuous;
  5. Let L ( X b , Y ) {\displaystyle L\left(X_{b}^{\prime },Y\right)} be the space of bounded linear maps from X b {\displaystyle X_{b}^{\prime }} to Y {\displaystyle Y} . Then, its strong dual can be identified with N b ^ π Y b , {\displaystyle N_{b}^{\prime }{\widehat {\otimes }}_{\pi }Y_{b}^{\prime },} so in particular if Y {\displaystyle Y} is reflexive then so is L b ( X b , Y ) . {\displaystyle L_{b}\left(X_{b}^{\prime },Y\right).}

Examples

  • For ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} a measure space, let L 1 {\displaystyle L^{1}} be the real Lebesgue space L 1 ( μ ) {\displaystyle L^{1}(\mu )} ; let E {\displaystyle E} be a real Banach space. Let L E 1 {\displaystyle L_{E}^{1}} be the completion of the space of simple functions X E {\displaystyle X\to E} , modulo the subspace of functions X E {\displaystyle X\to E} whose pointwise norms, considered as functions X R {\displaystyle X\to \mathbb {R} } , have integral 0 {\displaystyle 0} with respect to μ {\displaystyle \mu } . Then L E 1 {\displaystyle L_{E}^{1}} is isometrically isomorphic to L 1 ^ π E {\displaystyle L^{1}{\widehat {\otimes }}_{\pi }E} .[15]

See also

Citations

  1. ^ a b Trèves 2006, p. 438.
  2. ^ Trèves 2006, p. 435.
  3. ^ a b Trèves 2006, p. 437.
  4. ^ Trèves 2006, p. 445.
  5. ^ Trèves 2006, p. 439.
  6. ^ a b Ryan 2002, p. 18.
  7. ^ Ryan 2002, p. 24.
  8. ^ Ryan 2002, p. 43.
  9. ^ a b Schaefer & Wolff 1999, p. 173.
  10. ^ a b Schaefer & Wolff 1999, p. 120.
  11. ^ Schaefer & Wolff 1999, p. 94.
  12. ^ Trèves 2006, pp. 459–460.
  13. ^ Schaefer & Wolff 1999, p. 154.
  14. ^ Schaefer & Wolff 1999, pp. 175–176.
  15. ^ Schaefer & Wolff 1999, p. 95.

References

  • Ryan, Raymond (2002). Introduction to tensor products of Banach spaces. London New York: Springer. ISBN 1-85233-437-1. OCLC 48092184.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.

Further reading

  • Diestel, Joe (2008). The metric theory of tensor products : Grothendieck's résumé revisited. Providence, R.I: American Mathematical Society. ISBN 978-0-8218-4440-3. OCLC 185095773.
  • Grothendieck, Alexander (1955). "Produits Tensoriels Topologiques et Espaces Nucléaires" [Topological Tensor Products and Nuclear Spaces]. Memoirs of the American Mathematical Society Series (in French). 16. Providence: American Mathematical Society. ISBN 978-0-8218-1216-7. MR 0075539. OCLC 1315788.
  • Grothendieck, Grothendieck (1966). Produits tensoriels topologiques et espaces nucléaires (in French). Providence: American Mathematical Society. ISBN 0-8218-1216-5. OCLC 1315788.
  • Pietsch, Albrecht (1972). Nuclear locally convex spaces. Berlin, New York: Springer-Verlag. ISBN 0-387-05644-0. OCLC 539541.
  • Wong (1979). Schwartz spaces, nuclear spaces, and tensor products. Berlin New York: Springer-Verlag. ISBN 3-540-09513-6. OCLC 5126158.

External links

  • Nuclear space at ncatlab
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category