WaLSA Team

(Learn how and when to remove this message)
International team studying Sun activity
Waves in the Lower Solar Atmosphere (WaLSA) Team
Formation2018
TypeInternational Science Team
PurposeStudying wave activity in the lower solar atmosphere
FieldsSolar Physics, Astrophysics
Members
41 (Feb 2024)
Websitewalsa.team

The Waves in the Lower Solar Atmosphere (WaLSA) team is an international consortium focused on investigating wave activity in the Sun's lower atmosphere. The team's research seeks to understand how magnetohydrodynamic (MHD) waves generated within the Sun's interior and lower atmosphere influence the dynamics and heating of its outer layers.[1]

The WaLSA team's research has been supported by the Research Council of Norway through Rosseland Centre for Solar Physics (project no. 262622),[2] The Royal Society (award no. Hooke18b/SCTM),[3] and the International Space Science Institute (ISSI Team 502).[4]

Research

Understanding the Sun's atmospheric heating: The role of waves

The WaLSA team's research centers on understanding various wave modes propagating through solar structures of diverse sizes and properties.[5] To achieve this, the team leverages the highest-resolution imaging and spectropolarimetric observations available. The key objectives include:

The team employs a combination of high-resolution observations, theoretical modelling, and numerical simulations to achieve these objectives.[clarification needed]

Waves in the Lower Solar Atmosphere

The Sun's lower atmosphere, encompassing the photosphere (visible surface) and the chromosphere, is a dynamic realm where waves play a pivotal role[peacock prose] in energy transport. This region is filled with complex interactions between the turbulent plasma and the Sun's powerful magnetic fields.[peacock prose] These interactions give rise to various wave phenomena that can carry energy and momentum towards the outer layers of the solar atmosphere.[8]

Key Wave Types

The Importance of Studying Waves

Understanding waves in the lower solar atmosphere is crucial[according to whom?] for several reasons:

Observational Advancements

Recent advances in high-resolution solar telescopes, both ground-based and balloon-/space-borne, have revolutionised[peacock prose] our ability to study waves in the lower solar atmosphere.[14] These instruments provide unprecedented detail,[peacock prose] allowing scientists to track wave propagation, measure their energy, and investigate their interaction with the Sun's magnetic structures.

The Future of Solar Wave Exploration

Research on waves in the lower solar atmosphere is a vibrant and rapidly evolving field.[peacock prose] The next generation of solar telescopes, such as the Daniel K. Inouye Solar Telescope (DKIST)[15] and the European Solar Telescope (EST),[16] promises even more detailed views, aiding scientists in their quest to unravel the mysteries[peacock prose] of how waves shape the Sun's dynamic atmosphere.

References

  1. ^ "Magnetic Waves Explain Mystery of Sun's Puzzling Outer Layer". 22 January 2021.
  2. ^ "WaLSA: Waves in the Lower Solar Atmosphere - RoCS – Rosseland Centre for Solar Physics".
  3. ^ Jess, D. B.; Keys, P. H.; Stangalini, M.; Jafarzadeh, S. (February 8, 2021). "High-resolution wave dynamics in the lower solar atmosphere". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 379 (2190). arXiv:2011.13940. Bibcode:2021RSPTA.37900169J. doi:10.1098/rsta.2020.0169. PMC 7780137. PMID 33342388.
  4. ^ "WaLSA: Waves in the Lower Solar Atmosphere at High Resolution – ISSI Team led by P. H. Keys".
  5. ^ "First detection of the magnetic field in solar vortices". 8 December 2021.
  6. ^ Stangalini, M.; Verth, G.; Fedun, V.; Aldhafeeri, A. A.; Jess, D. B.; Jafarzadeh, S.; Keys, P. H.; Fleck, B.; Terradas, J.; Murabito, M.; Ermolli, I.; Soler, R.; Giorgi, F.; MacBride, C. D. (28 February 2022). "Large scale coherent magnetohydrodynamic oscillations in a sunspot". Nature Communications. 13 (1): 479. Bibcode:2022NatCo..13..479S. doi:10.1038/s41467-022-28136-8. PMC 8789893. PMID 35079009.
  7. ^ Tziotziou, K.; Scullion, E.; Shelyag, S.; Steiner, O.; Khomenko, E.; Tsiropoula, G.; Canivete Cuissa, J. R.; Wedemeyer, S.; Kontogiannis, I.; Yadav, N.; Kitiashvili, I. N.; Skirvin, S. J.; Dakanalis, I.; Kosovichev, A. G.; Fedun, V. (28 February 2022). "Vortex Motions in the Solar Atmosphere". Space Science Reviews. 219 (1): 1. doi:10.1007/s11214-022-00946-8. PMC 9823109. PMID 36627929.
  8. ^ Priest, Eric (2014-04-07). Magnetohydrodynamics of the Sun. Cambridge University Press. Bibcode:2014masu.book.....P. doi:10.1017/cbo9781139020732. ISBN 978-0-521-85471-9.
  9. ^ Libbrecht, K. G. (1988). "Solar p-mode phenomenology". The Astrophysical Journal. 334. American Astronomical Society: 510. Bibcode:1988ApJ...334..510L. doi:10.1086/166855. ISSN 0004-637X.
  10. ^ ALFVÉN, H. (1942-10-01). "Existence of Electromagnetic-Hydrodynamic Waves". Nature. 150 (3805). Springer Science and Business Media LLC: 405–406. Bibcode:1942Natur.150..405A. doi:10.1038/150405d0. ISSN 0028-0836. S2CID 4072220.
  11. ^ De Moortel, Ineke; Browning, Philippa (2015-05-28). "Recent advances in coronal heating". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2042): 20140269. arXiv:1510.00977. Bibcode:2015RSPTA.37340269D. doi:10.1098/rsta.2014.0269. ISSN 1364-503X. PMC 4410557. PMID 25897095.
  12. ^ Cranmer, Steven R. (2009). "Coronal Holes". Living Reviews in Solar Physics. 6 (1): 3. arXiv:0909.2847. Bibcode:2009LRSP....6....3C. doi:10.12942/lrsp-2009-3. ISSN 1614-4961. PMC 4841186. PMID 27194961.
  13. ^ Gopalswamy, Nat (2022-10-28). "The Sun and Space Weather". Atmosphere. 13 (11). MDPI AG: 1781. arXiv:2211.06775. Bibcode:2022Atmos..13.1781G. doi:10.3390/atmos13111781. ISSN 2073-4433.
  14. ^ Jess, David B.; Jafarzadeh, Shahin; Keys, Peter H.; Stangalini, Marco; Verth, Gary; Grant, Samuel D. T. (2023-01-19). "Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes". Living Reviews in Solar Physics. 20 (1). arXiv:2212.09788. Bibcode:2023LRSP...20....1J. doi:10.1007/s41116-022-00035-6. ISSN 1614-4961.
  15. ^ Rast, Mark P.; et al. (2021). "Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST)". Solar Physics. 296 (4): 70. arXiv:2008.08203. Bibcode:2021SoPh..296...70R. doi:10.1007/s11207-021-01789-2. ISSN 0038-0938.
  16. ^ Quintero Noda, C.; et al. (2022-09-30). "The European Solar Telescope". Astronomy & Astrophysics. 666. EDP Sciences: A21. arXiv:2207.10905. Bibcode:2022A&A...666A..21Q. doi:10.1051/0004-6361/202243867. ISSN 0004-6361.