Koefiziente binomial

Pascalen hirukia koefiziente binomialak erraz kalkulatzeko erabiltzen da

Konbinatorian, koefiziente binomiala [n] multzoak duen k tamainako azpimultzo kopurua.

C n = ( n k ) = n ! k ! ( n k ) ! , n , k 0 {\displaystyle C_{n}={\binom {n}{k}}={\frac {n!}{k!(n-k)!}},n,k\geq {0}}

Gainera, Newtonen Binomioaren formula erabiliz, koefiziente binomiala ( 1 + x ) n {\displaystyle (1+x)^{n}} polinomioan x k {\displaystyle x^{k}} monomioaren koefiziente da.

( x + y ) n = k = 0 n ( n k ) x n k y k {\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}}

Kalkulua

n zenbaki oso ez negatiboa eta k zenbaki oso bat izanik, koefiziente binomiala honela definitutako zenbaki arrunta da:

( n k ) = n ( n 1 ) ( n k + 1 ) k ( k 1 ) 1 = n ! k ! ( n k ) !  ;    n k 0 ( 1 ) {\displaystyle {n \choose k}={\frac {n\cdot (n-1)\cdots (n-k+1)}{k\cdot (k-1)\cdots 1}}={\frac {n!}{k!(n-k)!}}\quad {\mbox{ ; }}\ n\geq k\geq 0\qquad (1)}

Oinarrizko propietateak

  1. ( n 0 ) = 1 = ( n n ) {\displaystyle {\binom {n}{0}}=1={\binom {n}{n}}}
  2. Baldin eta k > n {\displaystyle k>n} bada, ( n k ) = 0 {\displaystyle {\binom {n}{k}}=0}
  3. Baldin eta 0 k n {\displaystyle 0\leq k\leq n} bada, ( n k ) = ( n n k ) {\displaystyle {\binom {n}{k}}={\binom {n}{n-k}}}
  4. ( n k ) = ( n 1 k ) + ( n 1 k 1 ) {\displaystyle {\binom {n}{k}}={\binom {n-1}{k}}+{\binom {n-1}{k-1}}}
  5. Baldin eta 0 r k n {\displaystyle 0\leq r\leq k\leq n} bada, ( n k ) ( k r ) = ( n r ) + ( n r k r ) {\displaystyle {\binom {n}{k}}{\binom {k}{r}}={\binom {n}{r}}+{\binom {n-r}{k-r}}}
  6. Baldin eta 1 k n {\displaystyle 1\leq k\leq n} bada, ( n k ) = n k ( n 1 k 1 ) {\displaystyle {\binom {n}{k}}={\frac {n}{k}}{\binom {n-1}{k-1}}}
  7. Baldin eta 1 k n {\displaystyle 1\leq k\leq n} bada, ( n k ) = n k + 1 k ( n k 1 ) {\displaystyle {\binom {n}{k}}={\frac {n-k+1}{k}}{\binom {n}{k-1}}}
  8. ( n 0 ) , ( n 1 ) , ( n 2 ) , . . . , ( n n ) , {\displaystyle {\binom {n}{0}},{\binom {n}{1}},{\binom {n}{2}},...,{\binom {n}{n}},} seguida gorakorra da bere maximoraino eta gero beherakorra. Baldin n bikoitia bada, maximoa ( n n 2 ) {\displaystyle {\binom {n}{\frac {n}{2}}}} da; bestela maximoak ( n n 1 2 ) {\displaystyle {\binom {n}{\frac {n-1}{2}}}} eta ( n n + 1 2 ) {\displaystyle {\binom {n}{\frac {n+1}{2}}}} dira.

Koefiziente binomialen identitateak

  1. ( n 0 ) + ( n 1 ) + ( n 2 ) + . . . + ( n n ) = 2 n {\displaystyle {\binom {n}{0}}+{\binom {n}{1}}+{\binom {n}{2}}+...+{\binom {n}{n}}=2^{n}}
  2. ( n 0 ) + ( n 2 ) + ( n 4 ) + . . . = ( n 1 ) = ( n 3 ) + ( n 5 ) + . . . = 2 n 1 {\displaystyle {\binom {n}{0}}+{\binom {n}{2}}+{\binom {n}{4}}+...={\binom {n}{1}}={\binom {n}{3}}+{\binom {n}{5}}+...=2^{n}-1}
  3. ( n 0 ) ( n 1 ) + ( n 2 ) . . . + ( 1 ) n ( n n ) = 0 , n 1 {\displaystyle {\binom {n}{0}}-{\binom {n}{1}}+{\binom {n}{2}}-...+(-1)^{n}{\binom {n}{n}}=0,n\geq 1}
  4. ( n k ) = ( n 1 k ) + ( n 2 k 1 ) + ( n 3 k 2 ) . . . + ( n ( k + 1 ) 0 ) {\displaystyle {\binom {n}{k}}={\binom {n-1}{k}}+{\binom {n-2}{k-1}}+{\binom {n-3}{k-2}}...+{\binom {n-(k+1)}{0}}}
  5. ( n k ) = ( n 1 k 1 ) + ( n 2 k 1 ) + ( n 3 k 1 ) . . . + ( k 1 k 1 ) {\displaystyle {\binom {n}{k}}={\binom {n-1}{k-1}}+{\binom {n-2}{k-1}}+{\binom {n-3}{k-1}}...+{\binom {k-1}{k-1}}}
  6. Vandermonderen identitatea. Izan bitez m , n , r 0 {\displaystyle m,n,r\geq 0} , ( m + n r ) = k = 0 r ( m k ) ( n r k ) = ( m 0 ) ( n r ) + ( m 1 ) ( n r 1 ) + ( m 2 ) ( n r 2 ) + . . . + ( m r ) ( n 0 ) {\displaystyle {\binom {m+n}{r}}=\sum _{k=0}^{r}{\binom {m}{k}}{\binom {n}{r-k}}={\binom {m}{0}}{\binom {n}{r}}+{\binom {m}{1}}{\binom {n}{r-1}}+{\binom {m}{2}}{\binom {n}{r-2}}+...+{\binom {m}{r}}{\binom {n}{0}}}
  7. ( 2 n n ) = k = 0 n ( n k ) 2 {\displaystyle {\binom {2n}{n}}=\sum _{k=0}^{n}{\binom {n}{k}}^{2}}

Adibidea

( 7 3 ) = 7 ! 3 ! ( 7 3 ) ! = 7 6 5 4 3 2 1 ( 3 2 1 ) ( 4 3 2 1 ) = 7 6 5 3 2 1 = 35. {\displaystyle {7 \choose 3}={\frac {7!}{3!(7-3)!}}={\frac {7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{(3\cdot 2\cdot 1)(4\cdot 3\cdot 2\cdot 1)}}={\frac {7\cdot 6\cdot 5}{3\cdot 2\cdot 1}}=35.}

Koefiziente binomialak (x + y)n binomioaren garapeneko koefizienteak dira (hortik datorkio bere izena):

( x + y ) n = k = 0 n ( n k ) x n k y k . ( 2 ) {\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}.\qquad (2)}

Ikus, gainera

  • Konbinazio (konbinatoria)

Kanpo estekak

Autoritate kontrola
  • Wikimedia proiektuak
  • Wd Datuak: Q209875
  • Commonscat Multimedia: Binomial coefficients / Q209875

  • Identifikadoreak
  • GND: 4145586-1
  • Hiztegiak eta entziklopediak
  • Britannica: url
  • Wd Datuak: Q209875
  • Commonscat Multimedia: Binomial coefficients / Q209875