HOXA3

Protein-coding gene in the species Homo sapiens
HOXA3
Identifiers
AliasesHOXA3, HOX1, HOX1E, homeobox A3
External IDsOMIM: 142954; MGI: 96175; HomoloGene: 40725; GeneCards: HOXA3; OMA:HOXA3 - orthologs
Gene location (Human)
Chromosome 7 (human)
Chr.Chromosome 7 (human)[1]
Chromosome 7 (human)
Genomic location for HOXA3
Genomic location for HOXA3
Band7p15.2Start27,106,184 bp[1]
End27,152,581 bp[1]
Gene location (Mouse)
Chromosome 6 (mouse)
Chr.Chromosome 6 (mouse)[2]
Chromosome 6 (mouse)
Genomic location for HOXA3
Genomic location for HOXA3
Band6 B3|6 25.4 cMStart52,146,042 bp[2]
End52,190,316 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • caput epididymis

  • corpus epididymis

  • right uterine tube

  • left uterine tube

  • parietal pleura

  • renal medulla

  • tibia

  • Descending thoracic aorta

  • visceral pleura

  • gastric mucosa
Top expressed in
  • ascending aorta

  • aortic valve

  • tunica albuginea of testis

  • thyroid gland

  • rete testis

  • left lung lobe

  • tracheobronchial tree

  • trachea

  • intercostal muscle

  • pharynx
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • sequence-specific DNA binding
  • DNA binding
  • DNA-binding transcription factor activity
  • HMG box domain binding
  • protein binding
  • DNA-binding transcription factor activity, RNA polymerase II-specific
  • RNA polymerase II cis-regulatory region sequence-specific DNA binding
Cellular component
  • nucleoplasm
  • nucleus
Biological process
  • embryonic skeletal system morphogenesis
  • glossopharyngeal nerve morphogenesis
  • regulation of transcription, DNA-templated
  • thymus development
  • transcription, DNA-templated
  • embryonic skeletal system development
  • multicellular organism development
  • animal organ formation
  • blood vessel remodeling
  • thyroid gland development
  • cartilage development
  • parathyroid gland development
  • angiogenesis
  • positive regulation of cell population proliferation
  • animal organ morphogenesis
  • specification of animal organ position
  • anterior/posterior pattern specification
  • regulation of transcription by RNA polymerase II
  • calcium ion transport
  • gene expression
  • magnesium ion homeostasis
  • bone mineralization
  • negative regulation of calcium ion transport
  • phosphate ion homeostasis
  • calcium ion homeostasis
  • positive regulation of receptor binding
  • positive regulation of transcription by RNA polymerase II
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

3200

15400

Ensembl

ENSG00000105997

ENSMUSG00000079560

UniProt

O43365

P02831

RefSeq (mRNA)

NM_030661
NM_153631
NM_153632

NM_010452

RefSeq (protein)

NP_109377
NP_705895

NP_034582

Location (UCSC)Chr 7: 27.11 – 27.15 MbChr 6: 52.15 – 52.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Homeobox protein Hox-A3 is a protein that in humans is encoded by the HOXA3 gene.[5][6][7]

Function

In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. Three transcript variants encoding two different isoforms have been found for this gene.[7]

During normal fetal development, HoxA3 is expressed in mesenchymal neural crest cells and endodermal cells found in the third pharyngeal pouch.[8] Expression of HoxA3 in these cells affects the proper formation of the thymus, thyroid, and parathyroid organs.[9][10] While the gene does not seem to affect the proliferation or migration of the pharyngeal neural crest cells, it does appear to trigger cellular differentiation events required to form these organs.[9] Knockout of HoxA3 leads to failure in forming the thymus (athymia) and parathyroid gland (aparthyroidism).[10] Mutant HoxA3 also causes a reduction in thyroid size. While the follicular and parafollicular cells still differentiate, their numbers are reduced and they are not evenly distributed throughout the gland.[9] Mutant HoxA3 models show similar phenotypes as those seen in DiGeorge's syndrome, and it is possible that the two are linked.[9]

Regulation

The HOXA3 gene is repressed by the microRNA miR-10a.[11]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105997 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000079560 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ McAlpine PJ, Shows TB (July 1990). "Nomenclature for human homeobox genes". Genomics. 7 (3): 460. doi:10.1016/0888-7543(90)90186-X. PMID 1973146.
  6. ^ Scott MP (November 1992). "Vertebrate homeobox gene nomenclature". Cell. 71 (4): 551–3. doi:10.1016/0092-8674(92)90588-4. PMID 1358459. S2CID 13370372.
  7. ^ a b "Entrez Gene: HOXA3 homeobox A3".
  8. ^ Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (October 1991). "A distinct Hox code for the branchial region of the vertebrate head". Nature. 353 (6347): 861–4. Bibcode:1991Natur.353..861H. doi:10.1038/353861a0. PMID 1682814. S2CID 4312466.
  9. ^ a b c d Manley NR, Capecchi MR (July 1995). "The role of Hoxa-3 in mouse thymus and thyroid development". Development. 121 (7): 1989–2003. doi:10.1242/dev.121.7.1989. PMID 7635047.
  10. ^ a b Chojnowski JL, Masuda K, Trau HA, Thomas K, Capecchi M, Manley NR (October 2014). "Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse". Development. 141 (19): 3697–708. doi:10.1242/dev.110833. PMC 4197593. PMID 25249461.
  11. ^ Han L, Witmer PD, Casey E, Valle D, Sukumar S (August 2007). "DNA methylation regulates MicroRNA expression". Cancer Biology & Therapy. 6 (8): 1284–8. doi:10.4161/cbt.6.8.4486. PMID 17660710.

Further reading

  • Apiou F, Flagiello D, Cillo C, Malfoy B, Poupon MF, Dutrillaux B (1996). "Fine mapping of human HOX gene clusters". Cytogenetics and Cell Genetics. 73 (1–2): 114–5. doi:10.1159/000134320. PMID 8646877.
  • Bonaldo MF, Lennon G, Soares MB (September 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
  • Manley NR, Capecchi MR (March 1998). "Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands". Developmental Biology. 195 (1): 1–15. doi:10.1006/dbio.1997.8827. PMID 9520319.
  • Sanger Centre, The; Washington University Genome Sequencing Cente, The (November 1998). "Toward a complete human genome sequence". Genome Research. 8 (11): 1097–108. doi:10.1101/gr.8.11.1097. PMID 9847074.
  • Mulder GB, Manley N, Maggio-Price L (December 1998). "Retinoic acid-induced thymic abnormalities in the mouse are associated with altered pharyngeal morphology, thymocyte maturation defects, and altered expression of Hoxa3 and Pax1". Teratology. 58 (6): 263–75. doi:10.1002/(SICI)1096-9926(199812)58:6<263::AID-TERA8>3.0.CO;2-A. PMID 9894676.
  • Manzanares M, Nardelli J, Gilardi-Hebenstreit P, Marshall H, Giudicelli F, Martínez-Pastor MT, Krumlauf R, Charnay P (February 2002). "Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain". The EMBO Journal. 21 (3): 365–76. doi:10.1093/emboj/21.3.365. PMC 125344. PMID 11823429.
  • Kosaki K, Kosaki R, Suzuki T, Yoshihashi H, Takahashi T, Sasaki K, Tomita M, McGinnis W, Matsuo N (February 2002). "Complete mutation analysis panel of the 39 human HOX genes". Teratology. 65 (2): 50–62. doi:10.1002/tera.10009. PMID 11857506.
  • Kim J, Bhinge AA, Morgan XC, Iyer VR (January 2005). "Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment". Nature Methods. 2 (1): 47–53. doi:10.1038/nmeth726. PMID 15782160. S2CID 6135437.
  • Wissmüller S, Kosian T, Wolf M, Finzsch M, Wegner M (2006). "The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors". Nucleic Acids Research. 34 (6): 1735–44. doi:10.1093/nar/gkl105. PMC 1421504. PMID 16582099.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


  • v
  • t
  • e
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies


Stub icon

This article on a gene on human chromosome 7 is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e